772 research outputs found

    Diffusion Limited Aggregation on a Cylinder

    Full text link
    We consider the DLA process on a cylinder G x N. It is shown that this process "grows arms", provided that the base graph G has small enough mixing time. Specifically, if the mixing time of G is at most (log|G|)^(2-\eps), the time it takes the cluster to reach the m-th layer of the cylinder is at most of order m |G|/loglog|G|. In particular we get examples of infinite Cayley graphs of degree 5, for which the DLA cluster on these graphs has arbitrarily small density. In addition, we provide an upper bound on the rate at which the "arms" grow. This bound is valid for a large class of base graphs G, including discrete tori of dimension at least 3. It is also shown that for any base graph G, the density of the DLA process on a G-cylinder is related to the rate at which the arms of the cluster grow. This implies, that for any vertex transitive G, the density of DLA on a G-cylinder is bounded by 2/3.Comment: 1 figur

    A derivative formula for the free energy function

    Full text link
    We consider bond percolation on the Zd{\bf Z}^d lattice. Let MnM_n be the number of open clusters in B(n)=[−n,n]dB(n)=[-n, n]^d. It is well known that EpMn/(2n+1)dE_pM_n / (2n+1)^d converges to the free energy function κ(p)\kappa(p) at the zero field. In this paper, we show that σp2(Mn)/(2n+1)d\sigma^2_p(M_n)/(2n+1)^d converges to −(p2(1−p)+p(1−p)2)κ′(p)-(p^2(1-p)+p(1-p)^2)\kappa'(p).Comment: 8 pages 1 figur

    Transient Random Walks in Random Environment on a Galton-Watson Tree

    Get PDF
    We consider a transient random walk (Xn)(X_n) in random environment on a Galton--Watson tree. Under fairly general assumptions, we give a sharp and explicit criterion for the asymptotic speed to be positive. As a consequence, situations with zero speed are revealed to occur. In such cases, we prove that XnX_n is of order of magnitude nΛn^{\Lambda}, with Λ∈(0,1)\Lambda \in (0,1). We also show that the linearly edge reinforced random walk on a regular tree always has a positive asymptotic speed, which improves a recent result of Collevecchio \cite{Col06}

    First passage time distribution for a random walker on a random forcing energy landscape

    Full text link
    We present an analytical approximation scheme for the first passage time distribution on a finite interval of a random walker on a random forcing energy landscape. The approximation scheme captures the behavior of the distribution over all timescales in the problem. The results are carefully checked against numerical simulations.Comment: 16 page

    Propositional Dynamic Logic with Converse and Repeat for Message-Passing Systems

    Get PDF
    The model checking problem for propositional dynamic logic (PDL) over message sequence charts (MSCs) and communicating finite state machines (CFMs) asks, given a channel bound BB, a PDL formula φ\varphi and a CFM C\mathcal{C}, whether every existentially BB-bounded MSC MM accepted by C\mathcal{C} satisfies φ\varphi. Recently, it was shown that this problem is PSPACE-complete. In the present work, we consider CRPDL over MSCs which is PDL equipped with the operators converse and repeat. The former enables one to walk back and forth within an MSC using a single path expression whereas the latter allows to express that a path expression can be repeated infinitely often. To solve the model checking problem for this logic, we define message sequence chart automata (MSCAs) which are multi-way alternating parity automata walking on MSCs. By exploiting a new concept called concatenation states, we are able to inductively construct, for every CRPDL formula φ\varphi, an MSCA precisely accepting the set of models of φ\varphi. As a result, we obtain that the model checking problem for CRPDL and CFMs is still in PSPACE

    Enhancing Approximations for Regular Reachability Analysis

    Get PDF
    This paper introduces two mechanisms for computing over-approximations of sets of reachable states, with the aim of ensuring termination of state-space exploration. The first mechanism consists in over-approximating the automata representing reachable sets by merging some of their states with respect to simple syntactic criteria, or a combination of such criteria. The second approximation mechanism consists in manipulating an auxiliary automaton when applying a transducer representing the transition relation to an automaton encoding the initial states. In addition, for the second mechanism we propose a new approach to refine the approximations depending on a property of interest. The proposals are evaluated on examples of mutual exclusion protocols

    Alternative proof for the localization of Sinai's walk

    Full text link
    We give an alternative proof of the localization of Sinai's random walk in random environment under weaker hypothesis than the ones used by Sinai. Moreover we give estimates that are stronger than the one of Sinai on the localization neighborhood and on the probability for the random walk to stay inside this neighborhood

    Parallelizing Synthesis from Temporal Logic Specifications by Identifying Equicontrollable States

    Get PDF
    For the synthesis of correct-by-construction control policies from temporal logic specifications the scalability of the synthesis algorithms is often a bottleneck. In this paper, we parallelize synthesis from specifications in the GR(1) fragment of linear temporal logic by introducing a hierarchical procedure that allows decoupling of the fixpoint computations. The state space is partitioned into equicontrollable sets using solutions to parametrized games that arise from decomposing the original GR(1) game into smaller reachability-persistence games. Following the partitioning, another synthesis problem is formulated for composing the strategies from the decomposed reachability games. The formulation guarantees that composing the synthesized controllers ensures satisfaction of the given GR(1) property. Experiments with robot planning problems demonstrate good performance of the approach

    The partially asymmetric zero range process with quenched disorder

    Full text link
    We consider the one-dimensional partially asymmetric zero range process where the hopping rates as well as the easy direction of hopping are random variables. For this type of disorder there is a condensation phenomena in the thermodynamic limit: the particles typically occupy one single site and the fraction of particles outside the condensate is vanishing. We use extreme value statistics and an asymptotically exact strong disorder renormalization group method to explore the properties of the steady state. In a finite system of LL sites the current vanishes as J∼L−zJ \sim L^{-z}, where the dynamical exponent, zz, is exactly calculated. For 0<z<10<z<1 the transport is realized by Na∼L1−zN_a \sim L^{1-z} active particles, which move with a constant velocity, whereas for z>1z>1 the transport is due to the anomalous diffusion of a single Brownian particle. Inactive particles are localized at a second special site and their number in rare realizations is macroscopic. The average density profile of inactive particles has a width of, ξ∼δ−2\xi \sim \delta^{-2}, in terms of the asymmetry parameter, δ\delta. In addition to this, we have investigated the approach to the steady state of the system through a coarsening process and found that the size of the condensate grows as nL∼t1/(1+z)n_L \sim t^{1/(1+z)} for large times. For the unbiased model zz is formally infinite and the coarsening is logarithmically slow.Comment: 12 pages, 9 figure
    • …
    corecore